
J .  Fluid Mech. (1986), vol. 164, pp.  27-51 

Printed in Great Britain 
27 

Maximal two-layer exchange through a contraction 
with barotropic net flow 

By L. ARM1 

AND D. M. FARMER 

Scripps Institution of Oceanography, La Jolla, California 92093 

Institute of Ocean Sciences, Sidney, BC, Canada, V8L 4B2 

(Received 14 January 1985 and in revised form 8 July 1985) 

The gravitational exchange of two fluids with different densities between reservoirs 
connected by a channel of constant depth and slowly varying breadth is analysed 
as a problem of internal hydraulics. It is shown that maximal two-way exchange with 
a net barotropic flow requires the presence of two controls, one at the narrrowest 
section and a second or ‘virtual’ control lying to one side of the narrowest section. 
The two controls are connected by a subcritical region, but are separated from 
subcritical conditions in the reservoirs by supercritical flow and stationary internal 
bores. Solutions are found for maximal exchange without a net barotropic component, 
in which case the problem is similar to that first examined by Stommel & Farmer 
(1953). The Stommel & Farmer analysis is shown to be a rather special limiting 
example of submaximal exchange, not generally applicable to natural flows. The 
addition of a net barotropic flow yields a range of different flow types, including 
maximal exchange, one-layer baroclinic flow, one-layer barotropic flow, submaximal 
flow governed by a reservoir condition and two-layer unidirectional flow. The 
maximal-exchange solution is integrated for periodic barotropic flow. 

1. Introduction 
The gravitational flow of two fluids of differing density through a contraction is 

important in numerous practical and geophysical problems, including the exchange 
of water between an estuary and the open sea. A special example of such flows, which 
has stimulated many recent applications, was first noticed by Stommel & Farmer 
(1953), who investigated the maximal two-way rate of exchange through a narrow 
channel connecting a semi-enclosed basin and the ocean. They argued that, beyond 
a certain point, mixing in a localized area within the basin supplying fresh water 
increased neither the exchange rate nor the density of the surface layer; they called 
this limiting example, in which two-layer stratification is maintained within the 
semi-enclosed reservoir or estuary, ‘ overmixing ’ . This seminal contribution turns out 
to be a very special limiting case of submaximal two-way exchange through a 
contraction, not generally applicable to many naturally occurring flows. We examine 
two-way exchanges through a contraction using a more general theoretical framework 
that includes both the lock exchange and the Stommel & Farmer example and extend 
the analysis to include barotropic flows, such as those induced by tides or meteorological 
effects. 

We are concerned especially with the limiting hydraulic process that governs 
maximal two-way exchange of the layers through the contraction. This mechanism 
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is important in many practical and geophysical problems since it imposes constraints 
on the rate at which fluids in two connected reservoirs may replace each other. The 
imposed barotropic flow may be ‘moderate’, in the sense that both layers move in 
opposite directions, or i t  may be ‘st,rong’, in which only one layer occurs at the 
narrowest section. An ‘intermediate’ condition may also occur, in which one of the 
layers is motionless within the contraction. 

Following a discussion of the basic assumptions and flow configuration in $2, we 
summarize in $ 3 the representation of steady two-layer solutions in the Froude-number 
plane introduced by Armi (1986). I n  $4 we consider the two-way exchange between 
two infinite reservoirs and the equivalent problem of exchange between two finite 
reservoirs that  are completely mixed; we also analyse the Stommel & Farmer case 
in which one reservoir is locally well mixed but maintains a two-layer stratification. 
The comparison of these cases is made conceptually simpler by discussing a 
progression of two-way exchange problems, beginning with those in which the flow 
is less than maximal, proceeding through the Stommel & Farmer case and then on 
to the exchange between two homogeneous reservoirs. 

I n  $5 we treat moderate barotropic flows and determine the location of the second, 
or ‘virtual ’, control identified by Wood (1970). Our analysis is extended to strong 
barotropic forcing in $6; in $7 we discuss the integration of transport applicable to 
tidal fluctuations. The related, but quite different, problem of two-way exchange over 
a sill is taken up in the companion paper by Farmer & Armi (1986). 

2. Basic assumptions and flow configuration 
We consider the problem sketched in figure 1 (a)  of two-layer flow through a channel 

of slowly varying width connecting two reservoirs. These reservoirs may consist of 
a semi-enclosed basin on one side, with the ocean on the other. The basin may have 
a source of positive buoyancy, such as fresh-water run-off in an estuary, or of negative 
buoyancy, such as high-salinity water produced by evaporation. The latter condition 
is a common feature of semi-enclosed seas in arid regions, including the Mediterranean 
(see, for example, Bryden & Stommel 1984; Armi & Farmer 1985) for which reason 
they are sometimes called inverse estuaries. An important simplification in our 
analysis, which allows us to isolate the essential physics of the maximal two-way 
exchange problem, is that  the walls of the channel are taken to be vertical. For the 
same reason we limit our discussion to the flow of two homogeneous layers in the 
absence of friction. (For an analysis of frictional effects in the exchange problem for 
the special case of a long strait, see Assaf & Hecht 1974.) 

The convention adopted throughout this paper is that for exchange flows the dense 
water moves from right to left and the less dense water moves from left to right (see 
figure 1 a ) .  

The present study is concerned with the fully nonlinear problem described by the 
one-dimensional shallow-water equations. The flow in each layer is assumed un- 
sheared, although this restriction, which has little effect on the results, can be easily 
removed using energy-distribution coefficients (cf. Chow 1959 p. 28). Hydraulic jumps 
or other adjustments may occur out,side of the neighbourhood of the control (see 
figure 1 a). Although mixing between the layers occurs within the basin, and may also 
be a prominent feature of the flow outside the control region, we neglect mixing in 
that short portion of the strait which dominates the hydraulic control. 

All of the flows discussed here are steady. Thus our analysis of barotropic flow 
makes use of the quasi-steady approximation, the validity of which for time-varying 
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FIGURE 1. (a) Side and plan views for maximal two-layer exchange flow through a contraction with 
no barotropic flow (9, = 1). (b) Solution curve (solid line) in the Froude-number plane for maximal 
two-layer exchange flow. Points a, b,, c correspond to locations shown in (a). Dashed curves are 
contours of normalized flow rate q;/b'. Shaded area represents subcritical flow. Maximal exchange 
flow in this configuration requires supercritical flow on both sides of b,. 

flows is commented upon in $7. In  the two-layer exchange flows with which we are 
concerned, the relative density difference between the layers is very much less than 
that a t  the free surface. The imposed barotropic flows considered here have external 
Froude numbers that are very much less than unity so that the free surface may be 
assumed horizontal. This is often called the rigid-lid approximation and the analysis 
presented here applies equally t o  exchange flows beneath rigid lids. 

3. Two-layer exchange through a contraction and representation in the 
Froude-number plane 

I n  many straits and channels the shape of the interface along the axis of the flow 
is asymmetric. Such asymmetry cannot be explained by linear theory for infinitesimal 
disturbances and we must appeal to the fully nonlinear description provided by the 
shallow-water equations for which the one-dimensional approximation is applied to 
each layer. Moreover i t  can be shown (Armi 1986) that a necessary condition for an 
asymmetrical interface under steady conditions is that  the flow pass through critical 
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conditions at one or more points in the channel. We use the term ‘critical’ in the 
hydraulic sense; specifically for two layers, the flow is said to be critical at locations 
for which 

@ = q + F ; =  1 forg’<g,  (1) 

where q = u,2/g‘yi is the densimetric Froude number for layer i ,  ui is the flow speed, 
ya the layer thickness and g‘ = g Ap/pz is the reduced gravity (Ap  = p2-pl). The 
upper and lower layers are identified by i = 1, i = 2, respectively. The composite 
Froude number G2 is the parameter which characterizes the essential nonlinearity of 
the flow. 

We therefore choose to express the solutions to the two-layer flow problem in the 
Froude-number plane (q, F2,). In  this plane the critical condition represented by ( 1 )  
collapses to a straight line separating supercritical from subcritical flows. A projection 
of a solution on to the Froude-number plane is shown in figure 1 (b). That portion 
of the Froude-number plane which is subcritical is shaded. 

It is convenient to express the flow rate qi = yiuib, where b(x) is the channel 
breadth, in non-dimensional form : 

A suitable reference breadth b, is the narrowest section of the channel, so that we 
define the dimensionless breadth b‘ as 

The layer depths yl, y2 are non-dimensionalized with respect to the total depth 
( y1 + y2) which we take to be constant as discussed above and analysed in detail by 
Armi (1985 $3): 

Yi y.  = - 
Y1 +Y2’ 

(4) 

and y;+y; = 1 .  ( 5 )  

From the above definitions of qi, Q, yj, b’ we express the dimensionless layer depth 
as 

By convention, flow in the upper layer is taken to be positive and thus, for exchange 
flows, lower-layer speeds are negative. We define the ratio of flow rates in each layer 
as qr = ql/-qz. I n  steady flow between two infinite homogeneous reservoirs without 
a barotropic component, qr = 1.  

If the flow is steady, q1 and q2 do not vary along the channel and (5 )  and (6) 
constitute the continuity conditions for each layer. Combining ( 5 )  and (6) we can 
therefore express the continuity equation for each layer in Froude-number space : 

For a given choice of qr, we may solve (7) so as to express the flow rate per unit breadth 
q:/b’ in Froude-number space. Contours of constant q;/b‘ are plotted as dashed lines 
in figure 1 (b), for qr = 1. 
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The Bernoulli equations for each layer are 

4 = fPlU?+P29(Yl+Y2)+P, (8) 

H2 = iP2U22+Pl9Yl+P29Y2+Pl (9) 

where p is the pressure at the surface. Subtracting (8) from (9), dividing through by 
g’p2(y1 + y2) and making use of the continuity equation, we express the dimensionless 
Bernoulli equations in Froude-number space : 

The term AH’ is the dimensionless energy difference between the two layers. In  the 
absence of internal hydraulic jumps or interfacial or boundary stresses, this quantity 
is conserved. 

If the two-way flow at some point can be specified in terms of M, solutions to 
(10) of constant AH’ completely define the flow at any point in the absence of a 
dissipative region such as a hydraulic jump. These solutions have been plotted in 
detail by Armi (1986). 

4. Maximal two-layer exchange flows 
We are interested in just one type of solution, corresponding to the maximal two-way 

exchange. In one example, representing the flow between two infinite reservoirs of 
uniform but different density, the inflowing layer spreads out in each reservoir so that 
its thickness becomes negligible. Since the flow rate is finite, the vanishing-layer depth 
implies a Froude number that is unbounded. Thus the reservoir conditions in this 
case correspond to + 00 in the reservoir of density pz, and fl+ 00 in the reservoir 
of density pl. There is only one solution to (10) for constant AH’ satisfying these 
boundary conditions; this is plotted as a solid line in figure l ( b )  and it represents the 
complete solution for the lock-exchange problem (AH’ = 0.5). The conditions occurring 
just at the hydraulic control were found by Wood (1970). In figure 1 (b), the solid 
curve connects the boundary conditions specified above. At the narrowest section, 

(11) 

so that the flow is just critical and the two layers are of equal thickness. If one or 
both of the reservoirs is not homogeneous, but has two layers (pl, p2), the solutions 
described above may still apply in the neighbourhood of the control. In this situation 
the subcritical two-layer condition within a reservoir is isolated from conditions in 
the neighbourhood of the control by an internal hydraulic adjustment or bore (see 
figure 1 a). The necessary conditions for this maximal exchange flow, when one or both 
of the reservoirs is two-layer, is discussed in $8. 

A stable maximal-exchange condition can also be achieved with a reservoir of finite 
dimensions. This effect can, for example, be achieved by thorough and complete 
mixing of the inflowing layer within the reservoir away from the control. In this case 
again, the thickness of the inflowing layer tends to zero. This solution is identical to 
that for the lock-exchange problem. 

The solution shown in figure l ( b )  illustrates a fundamental requirement for 
maximal two-layer exchange that supercritical flow must occur on either side of the 
control. If supercritical flow occurs on one side of the control only, two-way exchange 
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will be submaximal. Solutions for maximal and submaximal exchanges are shown 
in figure 2, together with sketches of the corresponding interface shape. 

I n  the absence of a net barotropic flow the maximal exchange solution ( A H  = 0.5) 
is tangent to  the control condition, G2 = 1 ,  a t  qijb’ = 0.25 (see figure 1 b). All other 
solutions that pass through G2 = 1, do so at a point for which q;/b’ < 0.25 and are 
thus submaximal. Note that the flow-rate curvesqijb‘ have been omitted from figure 2 
for clarity, but are identical to those in figure 1 (b). In  figure 2 (a )  the interface shape 
is sketched for the submaximal exchange corresponding to A H  = 0.40, with 
supercritical flow on the left-hand side of the control. I n  the figure, the supercritical 
flow is separated from two-layer subcritical flow in the reservoir by a bore. If the 
reservoir were homogeneous the interface would approach the channel floor. A bore 
that matches the subcritical conditions in the reservoir to the supercritical flow 
separating the reservoir from the control will exist provided that the interface height 
in the reservoir is less than that on the subcritical side. Figure 2 (b) shows the solution 
for A H  = 0.48, which is similar t o  that in figure 2(a) except that  the flow rate is 
greater (qijb’ = 0.21). When the interface height exceeds 0.5 the reservoir condition 
which provides the pressure difference to drive the lower layer, changes to the left 
side. Corresponding submaximal examples are shown in figure 2 (f, g) ; the supercritical 
flow for these examples is on the right-hand side of the control. I n  figure 2(a, b) the 
lower layer is accelerated to  high Froude number on the supercritical side of the 
control, whereas in figure 2 (f, g) the upper layer is accelerated to  high Froude number. 

If the interface height is raised to 0.5 in one reservoir, and dropped to less than 
0.5 in the other, two limiting submaximal exchange flows occur. These cases are 
represented by two segments of the A H  solutions in figure 2 ; one segment consists 
of the straight line intersecting the origin and the other segment consists of one 
portion of the maximal solution ( A H  = 0.5). I n  figure 2(c), for which the interface 
height is A H  = 0.5, the solution starts with fi  % 1 on the left, joins the line through 
the origin (q = f i )  a t  the control and proceeds down this line to the origin on the 
right. To the right of the control the interface must be horizontal. The corresponding 
example when the interface is 0.5 on the left side is shown in figure 2(e). 

Finally, in figure 2(d), we show the maximal exchange, corresponding to the 
continuous solution for A H  = 0.5. I n  this example, supercritical flow occurs on either 
side of the control. For the sign convention used in this paper (i.e. the reservoir of 
dense fluid is on the right), the interface height on the right must be greater than 
0.5 and must be less than 0.5 on the left. This is the usual maximal exchange flow, 
the control condition for which was first identified by Wood (1970). The flow rate 
for this case, qijb‘ = 0.25 (cf. equation 12), is identical to that for the limiting 
submaximal case (figure 2c, e). However, it is unlikely that for the limiting submaximal 
case a flow rate of q;/b’ = 0.25 could ever be achieved, since this would imply a 
discontinuous acceleration at the control. 

Stommel & Farmer (1953) applied their results to  the very peculiar example shown 
in figure 2(c), which they referred to as ‘overmixing’. They considered the solution 
connecting a two-layer finite reservoir to a completely mixed ocean. But they stated 
that ‘the only type of estuary to which the concept of overmixing can be applied 
is that  in which there is vertical stratification’ and ‘it is important not to attempt 
to apply this hydraulic condition to vertically mixed estuaries ’. Thus they excluded 
the lock-exchange solution discussed above and shown in figure 2 ( d ) .  

Analysis of the example discussed by Stommel & Farmer (1953) is most easily 
understood with a progression of solutions as shown above (figure 2 a-d) corresponding 
to progressive states of mixing in the finite reservoir or estuary which is connected 
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FIGURE 2. (Above) Plan view of contraction and solutions for both maximal and submaximal two- 
layer flows through a contraction. (Below) Sketches of submaximal (a, b, f, g),  limiting submaximal 
(c ,  e) and maximal (d) (Wood 1970) two-layer exchange flows. In  (a, b) submaximal exchange is 
controlled by the contraction and the reservoir condition on the right; in (f, g) the contraction and 
left reservoir condition control the exchange. The interface shape in the limiting examples 
(c )  (Stommel & Farmer 1953) and (e) (Stommel & Farmer 1953, inverted), is controlled by the 
right-and left-reservoir condition respectively. 
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to  the ocean. Stommel & Farmer describe this progression as follows: ‘Suppose that 
some agency for vertical mixing of the two layers exists in the estuary E and that 
the amount of mixing is progressively increased. The upper layer is now somewhat 
brackish, the discharge of both layers through (the transition) T is increased, and the 
interface is nearer to mid-depth. Increased mixing in E decreases the salinity 
difference of the two layers at T and increases the discharge; but there is a point 
beyond which increased mixing has no further effect on either discharges or the 
salinities a t  T. ’ Stommel & Farmer described this case, in which mixing proceeded 
up to  the point a t  which the interface within the estuary remained at mid-depth. 
However, there is no reason why the mixing should not proceed further, to  the point 
where the water within the estuary is thoroughly homogenized. There is no reason 
why completely mixed estuaries separated from the ocean by a transition should not 
be entirely analogous to  the lock-exchange problem. Thus i t  seems that the term 
‘overmixed’ has been applied to the special case in which mixing has proceeded just 
to  the point at which the estuary interface is at half depth. Complete mixing is the 
limiting case applicable to ‘well-mixed estuaries’ separated from the ocean by a 
hydraulic transition. 

Stommel & Farmer (1953) correctly identified the control condition for maximal 
exchange and allowed for the possibility of a very weak barotropic component by 
assuming that the control condition was unaffected. They incorrectly assumed that 
the interface height must therefore be the same (i.e. 0.5) within the estuary and 
they therefore limited the application of their result to  the very special case shown in 
figure 2 ( c ) .  It appears that  their laboratory study (Stommel & Farmer 1952) was 
appropriate only to the study of flow within the transition and not within the estuary. 
I n  the more typical lock-exchange problem to which this solution progresses, the 
interface shape is not restricted in this artificial way, so that  the flow converges to 
the maximal solution sketched in figure 2 ( d ) .  

5. Moderate barotropic flow 
I n  the discussion thus far we have restricted attention to the particular solutions 

for which the transport in each layer is equal, so that qr = 1 .  If the flow has a net 
barotropic component, for example due to tides or meteorological effects, or as in 
Wood’s (1970) laboratory experiment, due to differing total-layer depth on each side 
of the contraction, then qr =I= 1 and the solutions are skewed in the Froude-number 
plane. I n  steady-state solutions with finite reservoirs, buoyancy flux may arise from 
a local positive or negative mass flux (i.e. river discharge or evaporation), and this 
mass flux introduces a small barotropic component. This is readily taken into account 
by choice of the appropriate value of U,, (see (13i) below), but will not normally be 
a significant factor. 

Figure 3 shows the maximal-exchange solution with a barotropic component for 
the case qr = 0.5. As in all examples of moderate barotropic flow the solution 
connecting the two reservoir conditions intersects the line G2 = e+& = 1 twice, 
once at the narrowest section and a second time at a point lying some distance from 
the narrowest section in the direction from which the barotropic current is flowing. 
I n  particular, the solution ( A H  = 0.675) which is tangent to the line G2 = 1 can never 
connect two reservoirs in the way that i t  does in the absence of barotropic flow (see 
figure 4). Thus attempts to determine maximal two-way exchange through the 
control, by imposing only the constraint that G2 = 1 (see for example, Murray, Hecht 
& Babcock 1984) are incorrect. In  his analysis of the two-layer lock-exchange 
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(4 Moderate barotropic flow 
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FIQURE 3. (a) Side and plan views for maximal two-layer exchmge flow through a contraction with 
moderate barotropic flow from right to left, U, < 0. (b)  Solution curve (solid line) in the 
Froude-number plane for maximal two-layer exchange with qr = 0.5. Points a, b,, b,, c correspond 
to locations shown in figure 3(a) .  Dashed lines are contours of normalized flow rate &b‘. Note that 
the virtual control b, is separated from b, by subcritical flow. 

problem, Wood (1970) recognized that the solution must satisfy G2 = 1 at two 
locations in the Froude-number plane; he referred to this ‘unknown point’ as a 
virtual control. The virtual control is distinct from the control at the narrowest 
section and its location is obtained as shown in figure 3. 

As the barotropic flow changes, the skew of the solution curves as seen in figure 4 
and the relative position of the virtual control changes accordingly so that the latter 
always lies on the upstream side of the narrowest section, in the sense of the 
barotropic-flow component. Thus two controls are always required for maximal 
two-way exchange. Only in the absence of barotropic flow (a, = 1) do these two 
controls coalesce. 

In  order to describe all of the flow properties for maximal exchange, both with and 
without barotropic flow, it is sufficient to solve the equations describing the flow at 
the two control points. It is convenient to non-dimensionalize all flow speed8 in terms 
of the parameter [g’( y1 + y 2 ) ] i ;  henceforth only non-dimensional equations are used 
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qy = 0.5 

FIGURE 4. Solution curves in the Froude-number plane for qr = 0.5, 
together with normalized flow rates q;/b'. 

and we omit the primes. At  the narrowest section (subscript o) ,  the control condition 
is 

( 1 3 4  

(13b) 

; 4 0  = 1,  
Y l O  Yzo 

and the total depth is Y l O  + YZO = 1 .  

At the virtual control (subscript v)  which has section width bv and which is 
normalized with respect to bo, the control conditions are 

2 %+u:, = 1 ,  Ul"+UZV = 0. 
Y l V  Y2" 

Equation (13c) corresponds to the intersection of the solutions at  Q2 = 1 .  At the 
virtual control there is an additional constraint : the squares of the flow speeds are 
equal (Armi 1986 95 equation 35). For a bi-directional flow this constraint implies 
that the flow speed in each layer is equal and opposite. Since the total depth at  the 
virtual control is the same as at  the narrowest section, 

Y l " + Y Z V  = 1. (13e) 

We note that (13b) and (13e) imply a level surface, which is justified in our case 
since the external Froude number is very small. This is quite different to the example 
studied by Wood (1970) who examined the flow of two moving saline layers beneath 
a motionless layer of fresh water. In  Wood's example the relative density difference 
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FIQURE 5. Interface height yzo at the narrowest section and at the virtual control yZv, as functions 
of Uo for moderate barotropic flow. The width at  the virtual control, b,, is also shown. 

at the upper interface was not large and the difference in upper interface level between 
the two reservoirs provided the dynamic head required to drive the flow. 

At each of the two controls the relative-energy equation (cf. (10)) is 

M o  - u;o) + Y20 = W V  - 4 v )  + Y2v, (13.f) 

(13f 1 

U l O Y l O  = U l V Y l V b V ,  and U20Y20 = U2vY2vbv. (13% h) 

which immediately simplifies, using (13d), to 

1 2 - 2  
Z(U20 U l O )  + Y20 = Y2v. 

The continuity equations for each layer are 

The barotropic component is defined by the barotropic flow U, at the narrowest 
section, 

u o  = ~ l o Y l o + ~ 2 0 Y 2 0 *  (13i) 

The abovehine equations (13a-i) are solved for each of the nine unknowns (ulo, 
uz0, ulv, uZv, ylo, yz0, ylv, yav, b,) for a given value of U,. We now present solutions 
to these equations for all values of U, applicable for moderate barotropic flows. 

Figure 5 shows a plot of the interface heights y2,, yZv a t  the narrowest section and 
at the p i n t  of virtual control respectively, together with the width b, at the virtual 
control point. Note that, as Uo approaches zero, the virtual control coalesces with the 
control at the narrowest section so that y2, = yzv. As Uo increases positively, the 
virtual control occurs at progressively wider points of the contraction on the upstream 
side of b,. With increasing U,  the interface heights at both controls decrease, 
corresponding to the increased flow rate in the upper layer. These flow rates for each 
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FIGURE 6. Volume flow rates ql and qz as functions of U, for moderate barotropic flows. 

layer are plotted in figure 6. The difference in flow rate between layers at any given 
point in the solution is, of course, just the barotropic component U,. 

The flow speeds are plotted in figure 7. As anticipated, increasing Uo results in 
increasing surface-layer speed and decreasing lower-layer speed at  the narrowest 
section. At the virtual control, which is always on the upstream side, increasing U, 
results in decreasing lower-layer speed, since the virtual control moves to progressively 
wider points of the channel. In fact the surface-layer speed u1 and layer depth y1 at 
all locations in the control section must increase with increasing barotropic com- 
ponent U,. We also plot in this figure the shear Au, at the narrowest section. For 
U, = 0 this shear is I corresponding to marginal stability for long waves (Long 1956). 
As U, increases either positively or negatively, the shear decreases and hence these 
solutions are all stable. 

As mentioned earlier, increasing barotropic flow yields a progressively more skewed 
set of solutions (see figure 4). This feature is shown quantitatively in figure 8, where 
we plot the upper-layer Froude numbers qo, qv of the two control points as a 
function of U,. The corresponding relative flow rate qr is also shown. Figure 8 allows 
all of the essential features of the maximal two-way solutions such as that shown in 
figure 4, to be sketched directly for arbitrary barotropic flows. 

Maximal exchange with a moderate barotropic flow is sketched in the three central 
illustrations of figure 9(a). The virtual control is located to the left or right of the 
narrowest section, depending on the direction of the barotropic component. Similarly, 
the interface height departs from mid-depth depending on the barotropic flow (see 
also figure 5). c2 = 1 at the virtual control and at the narrowest section (figure 9b), 
which are connected by a subcritical flow. The flow is supercritical on either side of 
this region. If the barotropic component is great enough (U ,  = UT), the upper or lower 
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FIGURE 7. Velocities ulor uzo at the narrowest section, as well as at the virtual control (ulv = -uzv), 
as functions of U, for moderate barotropic flow. Note the velocity difference Au, = ul,-u,, at the 
narrowest section is always less than one. 

H 
F;o, F:” - 

uo 
FIGURE 8. Flow-rate ratio qr and surface-layer Froude number 4, at the narrowest section, 

and at the virtual control, qv, as functions of U, for moderate barotropic flows. 
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FIQURE 9(a). For caption see facing page. 
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layer is arrested and the exchange is controlled only at the narrowest section. The 
virtual control has effectively disappeared into the reservoir on the side from which 
the barotropic flow emanates. The control in this case separates critical flow in one 
reservoir from subcritical flow in the other, the direction of the barotropic component 
determining the orientation of the transition. 

6. Intermediate and strong regimes: box flows and 
salt wedge 

When the barotropic flow reaches the value U ,  = U,  
(17)), a transition occurs between two-way exchange 
motionless layer, which is shaded in figure 9, does not 
insofar as it determines the reduced gravity. 

the frictionless 

(evaluated below, equation 
and single-layer flow. The 
enter the dynamics except 
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FIQURE 9. (a) Sketches of the interface positions as a function of barotropic flow U,. The arrows 
to the left of the sketches indicate the strength and direction of the barotropio component; the 
arrowheads within each sketch indicate direction and magnitude of flow rate for each layer. 
Motionless layers are shaded. The positions of the virtual control b, and the location of the front 
b, are shown beneath the appropriate sketches. (b) Sketches of interface position as a function of 
barotropic flow U,, identical to (a), showing layer Froude numbers and composite Froude numbers 
at  different positions, beneath the appropriate sketches. 

Consider first the example of U, = - UT shown in figure 9. This single-layer flow 
is identical to open-channel flow through a contraction starting from the same 
reservoir depth, except that g is replaced by the corresponding value of 9'. Note that, 
as in open-channel flow, the interface height at the narrowest section is !j (see also 
figure 5 ) .  The flow is subcritical upstream (q < l) ,  critical at  the narrowest section 
(q = 1) and supercritical downstream (E > 1). The example of U, = U,  is inverted 
but otherwise identical to U, = - U,  since in this case it is the upper layer that flows. 

For U, in the ranges - 1 < U, < - UT and 1 > U, > U,, which we refer to as 



42 L. Armi and D .  M .  Farmer 

V/> Intermediate 

x y b f  boxflow 

m 3 - 
- 1  < LlO<--UT 

c G 
f- I 

u 0 -  - - 1  ..- ...... 

bf bo 

FIGURE 10. Sketches of box flows. Above: perspective view of intermediate box flow in which the 
interface meets the surface upstream of the narrowest section. Below: sketches of intermediate, 
transitional and strong box flows. 

intermediate barotropic flow, the interface intersects the surface or bottom respect- 
ively, not in the reservoir as in the limiting case U, = - U,  or U, = U,, but within 
the contraction. 

Flows in the range U,, < - U ,  are identical to flow of a single layer through a 
contraction with rigid, flat, upper and lower surfaces. We refer to  these as ‘box flows’, 
sketches of which are shown in figure 10. For - 1 < U, < - U ,  the interface reaches 
the upper surface of the box upstream of the narrowest section. The flow rate U, 
determines the interface height a t  thc control point b,. For U, < - U ,  this height 
exceeds 5 of the box depth and hence the subcritical region upstream of the control 
cannot extend into the reservoir and will intersect the surface some short distance 
upstream of the narrowest section. For progressively greater flow rate U,, the 
intersection lies closer to the narrowest section, which it reaches for U, = - 1. For 
this flow rate the critical depth at b, is equal to the box depth and there is no longer 
any upstream influence of the control. Conditions downstream of the narrowest 
section are determined by control at b,. For U,, < - 1 the control point, and hence 
the intersection b,, lies downstream of b,. 

The examples of intermediate and strong barotropic flow (U,  2 U,) shown in the 
upper four sketches of figure 9 are inverted but otherwise identical to U, < - U,, since 
in this case i t  is the upper layer that flows. Inverted box flows of this type have a 
common geophysical analogy in the fricationless salt wedge at the mouth of an estuary, 
for which the salt-wedge position is determined by the channel width and the flow 
rate. The dynamics in this case differ from those normally assumed to hold when the 
wedge has advanced up a long, uniform channel and the interface shape and position 
is influenced by friction and entrainment (cf. Dyer 1973). 
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Box flows are quite different to gravity currents or to the advance of an empty 
cavity along the upper boundary of a liquid, as discussed by Benjamin (1968). Box 
flows are steady with respect to  the contraction. Gravity currents and cavity flows 
can only be considered steady in a coordinate frame that moves along with the front. 
This distinction is important, since, in contrast to gravity currents, the frontal 
boundary for box flows is stationary and the interface shape behind the front is 
determined by flow rate and channel width. 

Over the range lU,l < lU,l < 1 corresponding to intermediate barotropic flow, in 
which the front lies upstream of b,, we determine the solutions as follows. From the 
control condition (13a) and the definition of U, in (13i) we find for a single moving 
layer 

(14) 

Yto = ut!9 (15) 

where the subscript i refers to the single moving layer. Eliminating uto, yro from the 
energy equation (13f), and making use of the identity U, = b, utf, yields 

This result allows us to evaluate U,, which is the limiting case for b, + 00 : 

U,  = ($ = 0.544. 

b, = U0(3Uj-2)-4. (18) 

(17) 
from (16) we also solve for the breadth of the channel at  the front, b,, 

When lU,l = 1 the front lies at the narrowest section (b, = b,) where the flow is just 
critical (e = 1). 

The slope of the front is given by 

(Armi 1985 equation 11 c), where i is the moving layer. The front first appears in the 
appropriate reservoir (refer to figure 9a, b) when IU,l = U,. Here both 4 -+ 1, and 
yt/b -4 1 ; hence the slope of the front is very slight, ayt/ax -+ db/dx. The slope remains 
small for intermediate barotropic flows since dbldx 4 1 by our assumption of slowly 
varying flow. 

For I U,l > 1 critical conditions (i.e. (14) and (15)) can no longer be satisfied at the 
narrowest section, which is then filled with a single moving layer. We refer to this 
condition as strong barotropic flow. Downstream of the narrowest section the flowing 
layer decelerates and at  some width b, reaches critical conditions : 

4 = 1 .  (20) 

With strong barotropic flow (4 - l) ,  the frontal slope becomes steep and non- 
hydrostatic effects need to be included to describe details of the frontal shapes which 
are only shown schematically in figure 9(a, b). 

Solutions for the three barotropic regimes, moderate, intermediate and strong, are 
shown in figures 11-13. In  figure 11 we show the interface height y2, at the narrowest 
section and the breadth of the channel b, at the front location. The interface height 
varies smoothly over the range - 1 < U, < 1 ,  but b, is a very sensitive function of 
U, for U, close to U,. We anticipate that, in naturally occurring two-layer flows 
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FIQURE 11. Interface height yzo and channel width b, a t  the transition between single and 
two-layer fluid, for intermediate and strong barotropic flow. 

subject to tidal forcing, fronts will appear quite suddenly just upstream of the 
narrowest section with increasing flow. Once the front has been swept downstream 
of b,, the corresponding channel width b, varies linearly with the barotropic flow U,, 
determined by (20) together with the continuity equation 

b, = U,. (21) 

The same relationship holds for the intersection point b, in a box flow. 
The flow rates ql, qz for each layer are shown in figure 12. Beyond the transition 

U,, only one layer is moving so that for this layer qt = U,; two-way exchange is 
limited to the range of moderate flows (I V,l < I UTl). Figure 13 shows the flow speeds, 
both at  the narrowest section (ul0, uzo) and also, for the moving layer, at the frontal 
location ulf, uzf. If the front has moved past the narrowest section, uio = U,. The 
flow speed at the front (up = U,/b,), however, is sensitively dependent on U, for 
U, < 1. For the intermediate range IV,l < IU,l < 1, eo = 1,  since control is main- 
tained with only one moving layer. If lU,l > 1 ,  infernal hydraulic control is lost at  
the narrowest section which is then filled with a single flowing layer. 

For intermediate flow the stability parameter Au is equal to ui since there is only 
a single moving layer. These flows are always stable in the neighbourhood of the 
control. However, outside of the control region there will be a point or points in the 
supercritical region, for all of the examples shown in figure 9, at which the flow 
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FIGURE 12. Flow rates ql ,  qe for moderate, intermediate and strong barotropic flow. 

becomes unstable according to Long's criterion. But this instability does not directly 
influence the control and is not relevant to the maximal-exchange flows discussed 
here. 

7. Influence of periodic flows on maximal two-way exchange 
In addition to the baroclinic exchange described earlier, natural flows in channels 

and atraita maw alan inchido rwrindio onrnnnnont.a aaanoiatnd with tidoa Prnvidod that  

the tidal effect is slow relative to the time taken for interfacial adjustment, we may 
treat the flow as quasi-steady. More specifically, this restriction implies that for 
moderate barotropic flow the time for a long wave to propagate through the 
subcritical section between the two controls (bo, b,) must be short compared with the 
tidal period. 

m . .  . " ... . . . .  . .. . . .  -. . . 
self-evident for the intermediate and strong regimes, in which cases the internal 
hydraulic control of the exchange is lost so that only a single layer flows (see 
figure 12). The effect is weaker, though still present, in the moderate regime (figure 6) 
for which q$( U,,) departs only slightly from straight lines. 

The integrated influence of flow over a tidal period is illustrated in figure 14. For 
U,,, greater than U,, the mean transport (q )  approaches a line of slope n-l. 
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FIQURE 13. Layer speeds ulo, uzo at the narrowest section b,, and layer speeds ulf, uzl at the 
transition between single and two-layer conditions. 

0 0.50 I .o I .5 
urn,, 

FIGURE 14. Exchange rate ( 9 )  averaged over a tidal cycle of amplitude U,,,. 
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8. Conclusion 
Two-way exchange through a horizontal contraction is a common natural pheno- 

menon wherever the water on each side is of different density. We have discussed 
the behaviour of this exchange in the limit when the internal hydraulic conditions 
fully determine the two-way exchange and have shown how these are modified by 
barotropic flow. However, it may happen that with barotropic forcing, for example 
during some portion of a tidal period, submaximal exchange occurs. Submaximal 
exchange will always be influenced by one of the reservoir conditions ; this possibility 
is discussed in the Appendix. 

Although this problem was introduced over thirty years ago by Stommel & Farmer 
(1953), i t  appears that the original analysis applies only to a very special example, 
which will not normally occur in nature. Moreover this important contribution, 
though widely quoted in the literature, has generally been misunderstood and 
incorrectly applied ; it  represents an interpretation of conditions only at the control 
and fails to distinguish between the limiting submaximal- and the usual maximal- 
exchange flows. The Stommel & Farmer example has also been incorrectly applied 
to two-way exchange over a sill. As discussed by Farmer & Armi (1986), hydraulic 
control of two-way exchange over a sill is fundamentally different to flow through 
a horizontal contraction ; in particular the steady solution between two mixed 
reservoirs does not satisfy the relationship y lo  = yzo = ?j. 

It is appropriate to consider also the problem of control in the case of more than 
one channel connecting the two reservoirs. The two-way exchange in this situation 
is readily found by summing the exchange for each individual channel, since the 
behaviour at each control is determined solely by the local channel width and by the 
density difference between reservoirs. 

The analysis has identified the essential features governing two-way exchange 
through a horizontal contraction. It has been shown that, in the general case of 
barotropically forced steady two-way exchange, maximal flow requires the existence 
of two controls, one at the narrowest section (b,) and a second ‘virtual’ control (b,) 
lying upstream of b,. Between these locations subcritical flow connects the two 
controls. Outside of the control region the flow is supercritical, thus isolating the 
two-way exchange in the control region from the influence of the reservoirs. Thus 
maximal two-way exchange is governed solely by the geometry of the channel and 
the densities of the two fluids. In the absence of barotropic flow the two controls 
coalesce at the narrowest section ( b J .  

If a reservoir is not homogeneous, a stationary bore matches the supercritical 
conditions near the control to the subcritical conditions in the reservoir. Maximal 
two-way exchange with a two-layer reservoir is only possible if the interface height 
in the reservoir lies within a range that permits the existence of this bore, cf. 
Appendix, equation (A 1). For reservoir heights outside this range the exchange is 
submaximal and is determined both by the single control (b,) and by the reservoir 
condition. 

If the barotropic forcing is sufficiently strong, two-way exchange can be arrested : 
only a single layer then flows through the contraction, above (or beneath) the other 
motionless layer. It is also possible for the forcing to overcome completely the internal 
hydraulic control. In  this limiting situation, if the upstream reservoir is homogeneous, 
fronts form and the single flowing layer fills the contraction. If the upstream reservoir 
has two layers, both layers flow in the same direction. 

The single-layer flows resulting from moderate and strong barotropic components 
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represent a special condition which we refer to as ‘box flows’, in which the presence 
of a rigid lid directly influences the interfacial shape and position. The inverted box 
flow corresponds to the situation encountered in an arrested, frictionless salt wedge, 
where the position and shape of a saline intrusion at the mouth of an estuary is 
governed not by interfacial entrainment and friction but by the channel width and 
the flow rate. 

Integration of the solutions for periodic flows allows parametrization of two-way 
exchange, averaged over the barotropic cycle. The integration leads to a para- 
metrization of the exchange as a function of tidal amplitude which may be used in 
practical examples such as tidally forced exchange through a strait. 

We are indebted to Grace Kamitakahara-King and Sharon Yamasaki for carrying 
out the numerical calculations and to Dr Donald Booth for his assistance with the 
numerical analysis. We are also indebted to two reviewers, David Wilkinson and an 
anonymous one, for many helpful comments. All calculations were done independently 
at the Institute of Ocean Sciences and Scripps Institution of Oceanography. This work 
received partial support from the Office of Naval Research. 

Appendix. The influence of reservoir conditions 
If a reservoir has two layers, maximal exchange requires the existence of stationary 

bores separating the subcritical reservoirs from the supercritical flows near the 
controls. Submaximal exchange occurs when the reservoir interface height is such 
that a bore can move back into and flood the control. The requirement for maximal 
exchange is that the reservoir interface height on the right (y2r)R must be greater 
than, and the reservoir interface on the left (y2r)L must be less than, the interface 
height at the virtual control : 

’ ?Irv7} for maximal exchange. 
( ~ 2 r ) ~  < ~ 2 v  

In  other words, a virtual control must occur for maximal exchange. The limiting inter- 
face height on the left is that for which the solution just touches the virtual control 
condition and then returns to the origin along the straight line q/q = constant 
(see figure 4). 

Figure 5 may be used to determine whether or not the virtual control is lost in any 
practical application. Over the range of Uo encountered, for example during a tidal 
cycle, limiting values of the reservoir interface heights (A 1) may be found by 
inspection. If the reservoir interface heights lie outside these bounds for some portion 
of the tidal cycle the exchange is influenced by the appropriate reservoir condition. 
Equations (13a-i) must then be replaced by the corresponding equations in the 
absence of a virtual control, since i t  is now the reservoir condition, together with the 
narrowest section, which control the flow: 

1 2 - 2  2 ( ~ 2 0  ~ 1 0 )  + ~ 2 0  = ~ 2 r 7  uo = ~ 1 0  ~ 1 0  + ~ 2 0  ~ 2 0 .  (A 2 c ,  4 
Equations (A 2a-d) may be solved for given values of Uo and yzr. The relevant 

reservoir interface height is that which occurs on the upstream side of the control, 
which is also the side on which the virtual control is lost. We identify these interface 



Two-layer exchunge through a contraction 

(4 
1 .o 

0.5 

n 

49 

" 
- I  u,- UR- us- 0 u€4+uR+ uv+ 1 

U O  

(4 . .  . .  ' . O f I  I I I I 1 3  I I I 1 ,  I . . .  . * .  . . .  . . *  . . .  

- 1  uv-u,-us- 0 uS+uR+ uv+ 1 

UO 

FIQURE 15. (a) Specific example of submaximal exchange flow, with (y2JR = 0.15 and (y& = 0.80. 
For U, outside the range Us- to Us+, the appropriate reservoir condition influences the exchange 
rate. For U, outside the range UR- to UR+, both layers flow in the same direction. ( b )  Flow speeds 
ul0, ut0 at the narrowest section for the submaximal-exchange flow example above. 
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G B 

FIGURE 16. Sketches of interface shape for a submaximal-exchange flow with barotropic flow 
from the left; corresponding sketchw for flow from the right would be similar. 

heights as ( y2r)L, (y2r)R for the left and right reservoirs, together with the corresponding 
barotropic speeds Us+ and Us- respectively. Figure 15(a) shows how these limiting 
values are found for a specific example. together with values of y2, derived from (A 2). 
The corresponding values of ul0, u2, are shown in figure 15(b). If the barotropic 
component is sufficient to  arrest the flow in one layer, a new transition U,  is reached 
above which both layers flow in the same direction. This transition to 'Reverse flow' 
is obtained by setting ul0 = 0 in (A 2) : 

UE+ = (fy,,): for U, < 0, (A 3) 

u , ~  = - (fyy, ,)f  for U, < 0. (A 4) 

Sketches of the interface shape during periodic flow through these transitions are 
shown in figure 16. Figure 16(a)  represents the maximal-exchange flow analogous to 
moderate barotropic flow as shown in figure 9, except that  we show stationary bores 
separating the reservoir from the controls. At U, = Us+, the virtual control merges 
with the bore on the upstream side (left) and the reservoir interface height on the 
left just matches the maximal-exchange control condition (figure 16 b ) .  Two-way 
submaximal exchange occurs for U, between Us+ and UR+ (figure 16c). At U, = CTR+, 
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the deeper layer is motionless (figure 16d) ; this solution corresponds to the straight-line 
solution that lies along the q-axis in figure 4. In figure 16(e), both layers move in 
the same direction. The solution in this case is similar to that for figure 16(c), which 
is a submaximal solution, except that the flow is unidirectional. In  figure 16 (f), with 
U, > Uv+, a virtual control analogous to that in figure 16(b)  appears, but for the 
unidirectional flow. Finally, in figure 16 (g), the virtual control occurs upstream with 
increasing U, and the flow on the downstream side adjusts to the downstream 
reservoir condition via a stationary internal bore. These unidirectional flows have 
been discussed in detail by Armi (1985). 
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